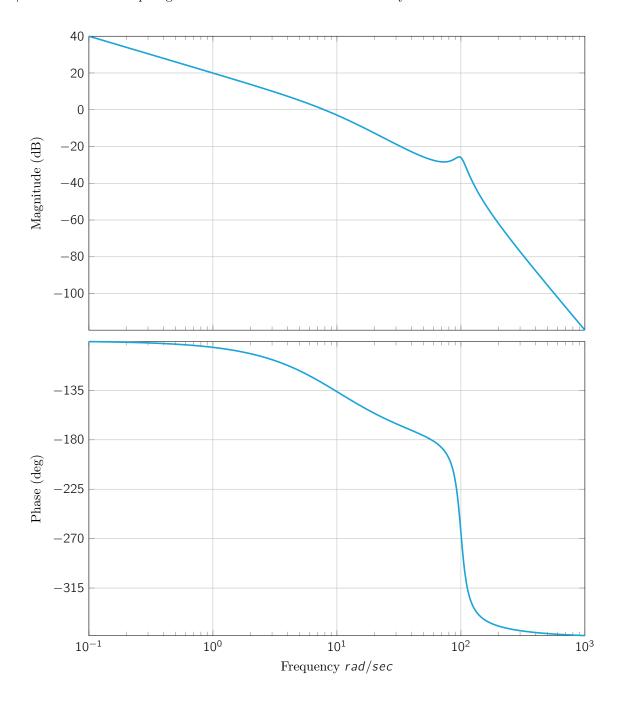
Control Systems : Set 5 : Loopshaping (1) - Solutions

Prob 1 \mid Consider the Bode plot given below. Estimate a model for the system.



We see that as the frequency goes to zero, the slope of the system is -20dB/dec and the phase is -90° . This tells us that there is one integrator. In Bode form, our transfer function will be

$$G(j\omega) = K_0 \frac{1}{j\omega} \prod \left(\frac{j\omega}{p_i} + 1 \right)^{\pm 1}$$

and so at the low frequency of $\omega=10^{-1}$, where we see that the gain is 40dB we have the relationship

$$20 \log_{10} |G(j\omega)| = 20 \log_{10} K_0 - 20 \log_{10} \omega = 20 \log_{10} K_0 - 20 \log_{10} 0.1 = 40$$

$$\rightarrow 20 \log_{10} K_0 = 40 + 20 \log_{10} 0.1 = 20$$

$$\rightarrow K_0 = 10$$

The phase drops by 90° , with the halfway point being at 10r/s. In addition, we can see that the slope changes from -2dB/dec to -40dB/dec at 10r/s, which tells us that there is a pole at s = -10.

The 180° drop in phase accompanied by the -40dB/dec drop in the slope of the magnitude plot tells us that there is a second order pole at a frequency of $\omega_n = 100r/s$. To estimate the damping ratio, we measure that the size of the resonance is approximately 10dB (difference between the magnitude plot, and a straight-line approximation). Using the relationship below, we can estimate the damping ratio

$$20\log_{10}\frac{1}{2\zeta}\approx 10$$

$$\to \zeta\approx 0.16$$

Putting this together, we get the model

$$G(s) \approx 10 \frac{1}{(s/10+1)(\frac{s}{100}^2 + 2\zeta\frac{s}{100} + 1)s}$$
$$= \frac{1,000,000}{(s+10)(s^2 + 200\zeta s + 10,000)s}$$

Matlab | There are several ways to enter transfer functions in Matlab - tf, zpk and ss. Use the help command in Matlab to see how they are used.

In addition, it is possible to enter transfer functions directly as a function of the Laplace variable

```
s = tf(',s')

G = (s-3)/(s^2 + 3*s + 34)
```

You can then manipulate transfer functions algebraically, e.g., G1 * G2 + G3.

Computing standard closed-loop transfer functions can be done with the command feedback.

Some commands that you'll find useful

bode	Create Bode plot					
nyquist	Create Nyquist plot					
step	Compute unit step function.					
	To compute the ramp response, just integrate the step input by multiplying by $1/s$ $step(G)$ Step response					
	step(G/s) Ramp response					
impulse	Compute unit impulse function					
lsim	Compute response to arbitrary input signal					

$$G(s) = \frac{10}{s(s+10)}$$

a) Put into Bode form

Order poles/zeros from lowest to largest frequency:

$$G(jw) = 1 \cdot (jw)^{-1} \cdot \left(\frac{jw}{10} + 1\right)^{-1}$$

b) Compute value at low-frequencies

There is one integrator. The bode plot will go to infinity asymptotically with a slope of -20 dB/dec as $\omega \to 0$

Compute a point on the asymptote for some value of ω . We choose $\omega=0.1$ because this is two orders of magnitude smaller than the smallest pole or zero.

$$20\log_{10}G(j0.1) = 20\log_{10}1 + (-1)20\log_{10}(j0.1) = 20dB$$

c) Compute the phase at low frequencies

$$\lim_{\omega \to 0} \angle G(j\omega) = 0$$

$$-90 \cdot 1$$

$$+90 \cdot 0$$

$$-180 \cdot 0$$

$$+180 \cdot 0$$

$$+180 \cdot 0$$

$$= -90$$

$$0^{\circ} \text{ if } K_0 > 0 \text{ else } 180^{\circ}$$

$$-90 \cdot (\text{Num integrators})$$

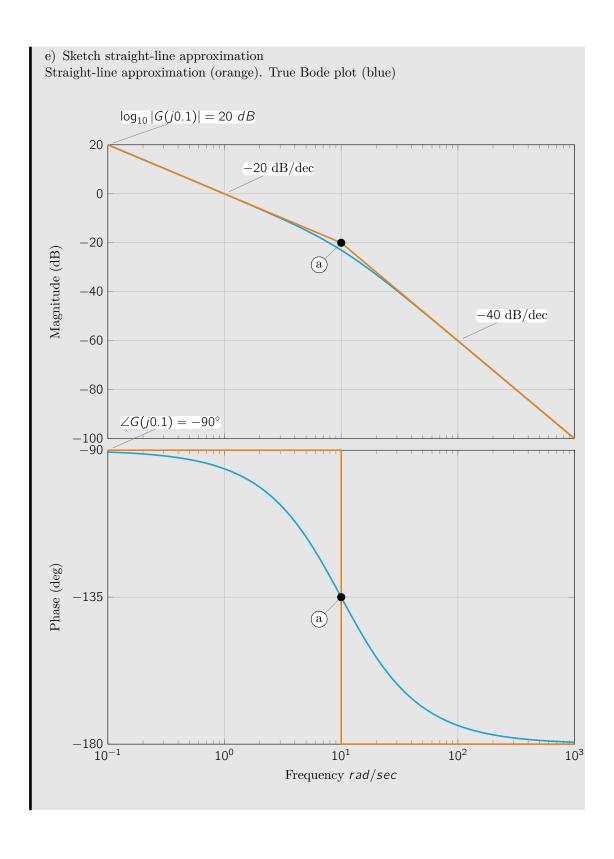
$$-180 \cdot (\text{Num of RHP poles})$$

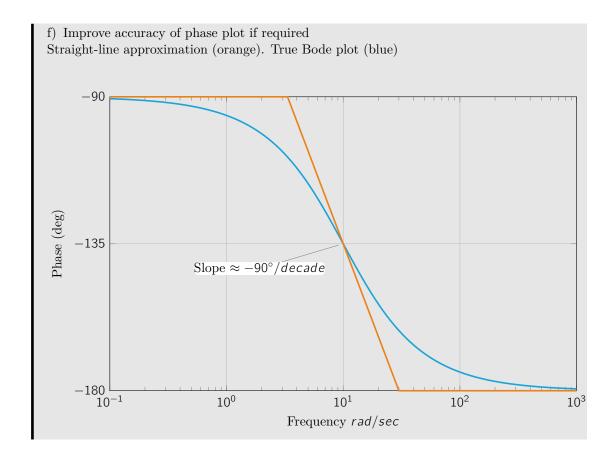
$$180 \cdot (\text{Num of RHP zeros})$$

d) Compute impact of each pole and zero

Compute impact of each pole / zero on magnitude and phase from low to high frequency.

			Pole/Zero		$\Delta \mathrm{dMag}$	Δ Phase
(a)	$\left(\frac{jw}{10}+1\right)^{-1}$	10	LHP pole	1^{st}	-20	-90





$$G(s) = \frac{5}{s(s+2)(s+1)}$$

a) Put into Bode form

Order poles/zeros from lowest to largest frequency:

$$G(jw) = 2.5 \cdot (jw)^{-1} \cdot \left(\frac{jw}{1} + 1\right)^{-1} \cdot \left(\frac{jw}{2} + 1\right)^{-1}$$

b) Compute value at low-frequencies

There is one integrator. The bode plot will go to infinity asymptotically with a slope of -20 dB/dec as $\omega \to 0$

Compute a point on the asymptote for some value of ω . We choose $\omega = 0.01$ because this is two orders of magnitude smaller than the smallest pole or zero.

$$20\log_{10}G(j0.01) = 20\log_{10}2.5 + (-1)20\log_{10}(j0.01) = 47.96dB$$

c) Compute the phase at low frequencies

$$\lim_{\omega \to 0} \angle G(j\omega) = 0$$

$$-90 \cdot 1$$

$$+90 \cdot 0$$

$$-180 \cdot 0$$

$$+180 \cdot 0$$

$$+180 \cdot 0$$

$$= -90$$

$$0^{\circ} \text{ if } K_0 > 0 \text{ else } 180^{\circ}$$

$$-90 \cdot (\text{Num integrators})$$

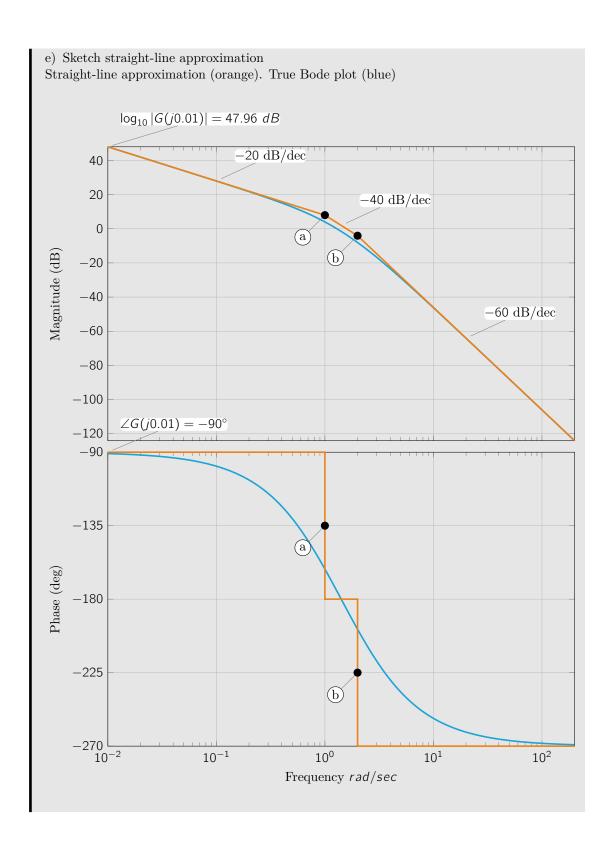
$$-180 \cdot (\text{Num of RHP poles})$$

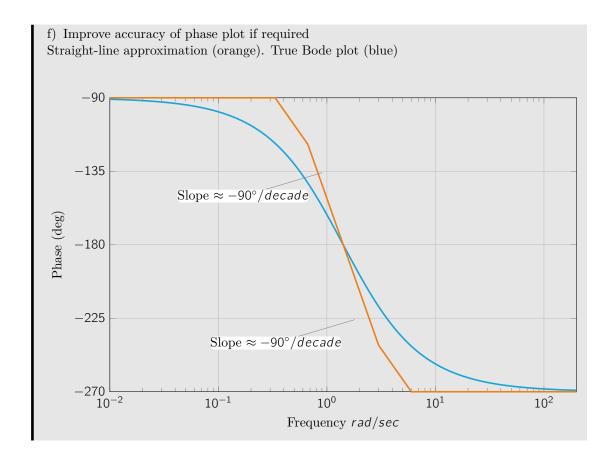
$$180 \cdot (\text{Num of RHP zeros})$$

d) Compute impact of each pole and zero

Compute impact of each pole / zero on magnitude and phase from low to high frequency.

	_		Pole/Zero			
a	$\left(\frac{jw}{1}+1\right)^{-1}$	1	LHP pole	1^{st}	-20	-90
b	$\left(\frac{jw}{1} + 1\right)^{-1}$ $\left(\frac{jw}{2} + 1\right)^{-1}$	2	LHP pole	1^{st}	-20	-90





$$G(s) = \frac{s}{s^2 + 2s + 5}$$

a) Put into Bode form

Order poles/zeros from lowest to largest frequency:

$$G(jw) = 0.2 \cdot (jw)^{1} \cdot \left[\left(\frac{jw}{2.236} \right)^{2} + 2 \cdot (0.4636) \frac{jw}{2.236} + 1 \right]^{-1}$$

b) Compute value at low-frequencies

There is one zero at zero. The bode plot will go to zero asymptotically with a slope of 20 dB/dec as $\omega \to 0$

Compute a point on the asymptote for some value of ω . We choose $\omega = 0.022$ because this is two orders of magnitude smaller than the smallest pole or zero.

$$20\log_{10}G(j0.02236) = 20\log_{10}0.2 + (1)20\log_{10}(j0.02236) = -46.99dB$$

c) Compute the phase at low frequencies

$$\lim_{\omega \to 0} \angle G(j\omega) = 0$$

$$-90 \cdot 0$$

$$+90 \cdot 1$$

$$-180 \cdot 0$$

$$+180 \cdot 0$$

$$+180 \cdot 0$$

$$-180 \cdot (Num of RHP poles)$$

$$+180 \cdot 0$$

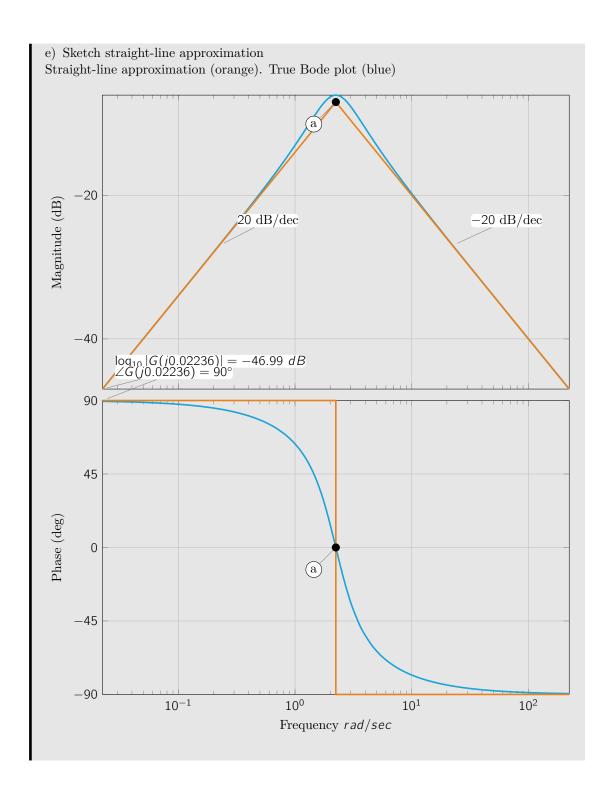
$$-180 \cdot (Num of RHP zeros)$$

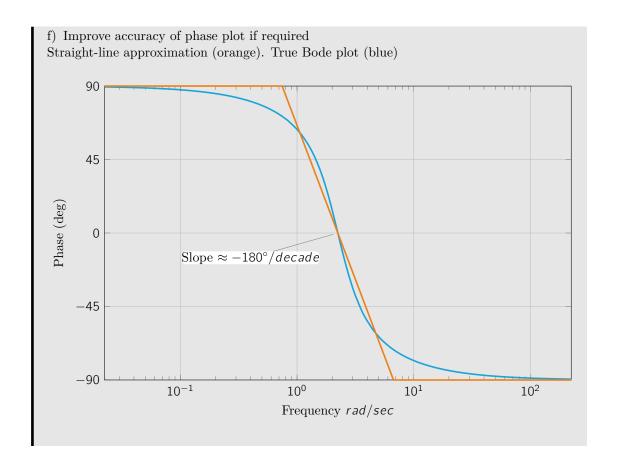
$$-180 \cdot (Num of RHP zeros)$$

d) Compute impact of each pole and zero

Compute impact of each pole / zero on magnitude and phase from low to high frequency.

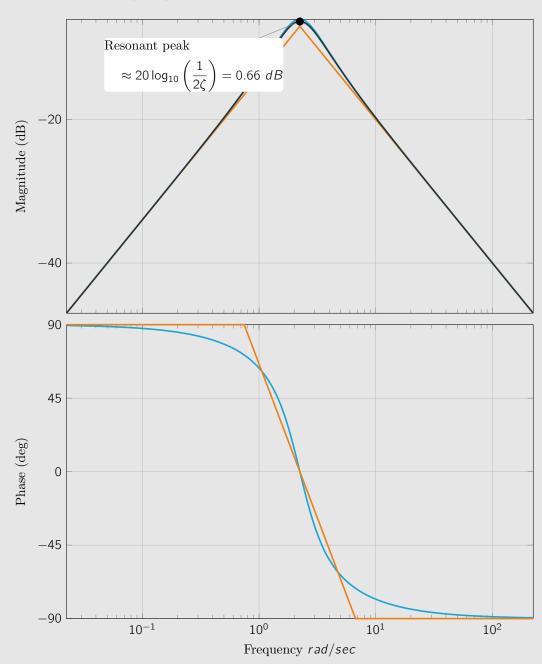
(a)
$$\left[\left(\frac{jw}{2.236}\right) + 2 \cdot (0.4636)\frac{jw}{2.236} + 1\right]^{-1}$$
 Freq Pole/Zero Order $\Delta dMag \Delta Phase -180$





g) Add resonance peaks

For each second order pole and/or zero, compute the magnitude at the resonance peak Straight-line approximation (orange). True Bode plot (blue). Straight-line approximation with resonant peaks (black).



$$G(s) = \frac{1}{(s-5)(s+2)}$$

a) Put into Bode form Order poles/zeros from lowest to largest frequency:

$$G(jw) = -0.1 \cdot \left(\frac{jw}{2} + 1\right)^{-1} \cdot \left(\frac{jw}{5} - 1\right)^{-1}$$

b) Compute value at low-frequencies There are no integrators / zeros at zero:

$$G(j0) = K_0 = -0.1$$
$$20 \log_{10} |G(j0)| = -20 dB$$

c) Compute the phase at low frequencies

$$\lim_{\omega \to 0} \angle G(j\omega) = 180$$

$$-90 \cdot 0$$

$$+90 \cdot 0$$

$$-180 \cdot 1$$

$$+180 \cdot 0$$

$$= -180$$

$$0^{\circ} \text{ if } K_0 > 0 \text{ else } 180^{\circ}$$

$$-90 \cdot (\text{Num integrators})$$

$$90 \cdot (\text{Num zeros at zero})$$

$$-180 \cdot (\text{Num of RHP poles})$$

$$180 \cdot (\text{Num of RHP zeros})$$

d) Compute impact of each pole and zero Compute impact of each pole / zero on magnitude and phase from low to high frequency.

Freq Pole/Zero Order
$$\triangle dMag$$
 $\triangle Phase$

a) $\left(\frac{jw}{2}+1\right)^{-1}$ 2 LHP pole 1^{st} -20 -90

b) $\left(\frac{jw}{5}-1\right)^{-1}$ 5 RHP pole 1^{st} -20 +90

